POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

COURSE DESCRIPTION CARD - SYLLABUS

Course name

Harmonic Analysis

Course

Field of study Year/Semester

Mathematics in Technology 1/2

Area of study (specialization) Profile of study

general academic

0

Level of study Course offered in

Second-cycle studies Polish

Form of study Requirements full-time compulsory

Number of hours

Lecture Laboratory classes Other (e.g. online)

30 0

Tutorials Projects/seminars

30 0

Number of credit points

4

Lecturers

Responsible for the course/lecturer: Responsible for the course/lecturer:

dr Alicja Dota dr Karol Leśnik

e-mail: alicja.dota@put.poznan.pl e-mail: karol.lesnik@put.poznan.pl

tel.: 61 665 27 12 tel.: 61 665 23 46

Faculty of Control, Robotics and Electrical Faculty of Control, Robotics and Electrical

Engineering Engineering

Prerequisites

Student is familiar with the knowledge of mmathematical analysis, complex analysis, measure theory and functional analysis.

Course objective

Student knows basic ideas of harmonic analysis, see their connections to other fields of mathematics and can apply them in differential equations.

Course-related learning outcomes

Knowledge

1. Student knows basic concepts of Fourier transform, Fourier series and theory of distributions.

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

2. Student knows basic ideas, theorems and problems of Fourier transform, Fourier series and theory of distributions.

Skills

- 1. Student understand idea of Fourier transform and its importance.
- 2. Student can apply Fourier transform and theory of distribution, for example, to solve differential or partial differential equations.

Social competences

- 1. The student can formulate questions precisely in order to deepen his own understanding of a given subject or to find the missing elements of reasoning.
- 2. The student is able to find information in literature on one's own including literature written in foreign languages.

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

Lectures: Valuation of knowledge and skills during oral and written exam.

Tutorials: Two large tests concerning an application of knowledge from the lectures in exercises. Valuation of student answers during lessons. Valuation of activity during lessons.

Programme content

- 1. Convolution algebra L^1 and basic of Fourier series.
- 2. Approximation kernels: Fejer kernel, Poisson and de la Vallée Poussin kernel.
- 3. Fourier coefficients of special classes of functions.
- 4. Fourier series of functions from L^2 (Riesz-Fischer, Parseval and Plancherel theorems).
- 5. Pointwise convergence of Fourier series.
- 6. Conjugate function, Hilbert and Riesz transforms.
- 7. Distributions and tempered distributions.
- 8. Derivatives and transforms of tempered distributions.
- 9. Fourier transform on R^n.
- 10. Inverse Fourier transform and applications.
- 11. Maxial operator, Calderon-Zygmund operators and Hilbert transform.
- 12. Malgrange-Ehrenpreis theorem and applications to differential equations.
- 13. Fourier multipliers.

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Teaching methods

Lectures:

- -presenting theory and relating it with a students knowledge,
- presenting new material in connection with refeering to pevious lectures and subjects,

Tutorials:

- solving exercises strictly connected with the theory presented on lectures,
- solving exercises on the blackboard,
- detailed discussion of solutions.

Bibliography

Basic

- 1. W. Rudin, Analiza funkcjonalna, Wyd. Nauk PWN, 2002.
- 2. J. Musielak, Wstęp do analizy funkcjonalnej, PWN, 1976.
- 3. L. Grafakos, Classical Fourier Analysis, 2ed, Springer, 2008.
- 4. Y. Katznelson, An introduction to harmonic analysis, 3ed.
- 5. H. Helson, Harmonic analysis, Addison-Wesley Publ. Company, 1983.

Additional

- 1. L. C. Evans, Równania różniczkowe cząstkowe, PWN, 2002.
- 2. E. Stein, R. Shakarchi, Fourier analysis. An introduction, Princeton University Press, 2007.

Breakdown of average student's workload

	Hours	ECTS
Total workload	115	4,0
Classes requiring direct contact with the teacher	67	2,5
Student's own work (literature studies, preparation for laboratory classes/tutorials, preparation for tests/exam, project preparation) ¹	48	1,5

¹ delete or add other activities as appropriate